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Adaptive control has become practical in recent years because of the

increased use of VLSI technology in implementing feedback control. The work

described here has lead to the first proofs of convergence for some adaptive

algorithms for stabilizing linear time invariant, but unknown, systems. It has

also clarified robustness issues associated with this class of adaptive control

algorithms. With the use of geometrical methods it has been possible to estab-

lish the impossibility of achieving several types of adaptive behavior. New

directions for expanding the field of adaptive control have been explored.

Introduction

The overall goal of research in adaptive control is to investigate how, and

to what extent, it is possible to design controllers which will work even if the

system which is being controlled or observed is unknown, changed or encounters

new obstacles. This involves an ever increasing amount of computer control

and techniques which, in other contexts, might be thought of as being

artificially intelligent.

In the last few years there has been considerable progress on one particular

problem in adaptive control. This is the problem of building a "universal" sta-

bilizer for linear time invariant systems. Progress in this area has centered

around the idea that, in an interesting set of cases, it is possible to "try out" a

set of gains, at least one of which is known to be stabilizing, and to detect when

a suitable gain has been found. All this is done by an autonomous controller

governed by ordinary differential equations and coupled to the original system

to be stabilized through its inputs and outputs. The results in this area now

seem to have reached a certain maturity in the sense that the a priori condi-

tions which are imposed seem natural and the results have been simulated in a

variety of circumstances.

86 1C P-0t
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Stlf-Tuning R-guilntioan-q

Self-tuning regulators are governing devices which can adapt to changes in

the plant or system which is to be governed while achieving some desired con-

trol objective. The development of a coherent yet powerful approach to the

design of such adaptive controllers has been and continues to be one of the

major research goals in systems engineering. Typical applications would include

the design of autopilots, say for jet aircraft or helicopters, which can adapt to

variations in the system parameers, such as attitude or altitude.

Philosophically there have been two approaches to adaptive control: The

"indirect method" which applies statistical methods in order to overcome

parameter uncertainty and the "direct method" which is capable of learning

enough about the system "on-line" to control the closed-loop input-output

behavior.

Regarding "indirect methods", work at Harvard has analyzed the minimum

amount of inherent complexity in statistical procedures due to the complicated

geometry of the parameterization of many familiar classes of systems. Such

necessary conditions for the consistency of statistical identification schemes are

based on geometric aproach to variational problems on manifolds, developed in

the first quarter of this century.

The design of "direct" adaptive controllers can be illustrated by the follow-

ing example: Given ........
Acceqssion For

(1) --- y + bu, u,y EIR 2, bEIR - {} find a compensator -NTS ,RA&I
DTTC TAF

(2) l ---f(k, y) 1,,,, ,, , ' -

and a feedback law <. . II

(3) u - g(k, y) _. . ,ty Codes

iand/or

t Jc
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such that the overall "closed-loop" system (1)-(3) satisfies

lir k(t) exists, lir y(t) - 0
t--OO t-oo

for all initial data (Yo, ko).

The point here is that b is an unknown parameter. If b were a known

positive real number, choosing k>- and u - -ky would stablize (1). If b were
b

known only to be positive then choosing (2) so that k would eventually become

larger than I would stabilize (1). Indeed
b

(2) k' . y2

will work, having chosen it--- sign*(b)k. The stability analysis rests largely

on the fact that, after such feedback, kr is approximately tzy where /<0.

Exte.-ding a more complicated but fundamental controller (2)-(3) introduced by

R. Nussbaum, it has been possible to design an adaptive controller

(2)' k= y2

(3) u s(k)ky

where s(k) switches sign slowly but sufficiently often so that the Ce'saro mean of

s(k)k has lim inf = --oo and lir sup = +oo. This gives stability for y despite

the fact that to first order 5y is ju(t)y with 1A either positive or negative. Surpris-

ingly, (2)' - (3)' "learns" the sign of b eventually rendering A(t) negative.

The simplicity of (2)' - (3)' has made it possible to extend the scope of our

adaptive controller. Briefly, in joint work with J.C. Willems we have shown

(2)', (3)' is self-tuning for (1) whenever (1) is replaced by

(la) a minimum phase system

x - Ax + bu
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y -cx

with cb -A 0; or

(1b) i = Ax + bu x,b,c E a Hilbert space

y = cX

where A is perhaps unbounded but has pure point spectrum, (1b) is minimum

phase, and c, b 0 0.

Aside from including delay-systems and distributed systems, that (2) - (3)'

works even for inifnite-dimensional systems stresses the major advantage of our

controller: Being an output-feedback strategy one needs no estimate on the

order of the system. Indeed, one use of "minimum phase" is an adaptive version

of the classical root-locus plots for output feedback. Present work involves

extending the scope of this adaptive control to include nonlinear systems with

stable zero dynamics. This can be done for low-order systems and possibly

some aspects of nonlinear adaptive control theory are within sight.

Sef-Tilning and CIsagqir ! Theory

It is possible to draw on classical control theory and modern stability

theory in the design of self-tuning regulator for minimum phase systems. This

controller differs from earlier controlleers in that it does not use either of the

standard constructions which

(i) use an explicit identification subroutine; or

(ii) do parameter adjustment for a universal observer/augmented error model.

Instead, this controller is a classical direct output feedback gain whose value is

adjusted by the inherent stability or instability of the plant. The design is sim-

ple, enabling one to give a fairly straightforward stability proof, and points to

similar design philosophies for classes of more complicated systems. The first
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main result is:

Thearem: Suppose

S-=Ax + bu (I)

y = cx

is a minimum phase system with cb #0. Consider the (adaptive) controller

y u -s(k)ky (2)

where the Ce'saro mean C(k) of s(k)k satisfies

lim Eup C(k) = +ook--+oo

lim inf C(k) = -00
k--oo

Then, (1)-(2) is self-tuning, i.e. for all initial data (x0 , k0)

i , (i) lim ---- 0

(ii) lim kt exists.

t-.+0

We emphasize that (2) represents direct output-to-input feedback and that

consequently we require no knowledge of (an upper bound of) the dimension of

the state space of (1). This eliminates the problem of "unmodelled dynamics",

but also hints at the possibility of direct adaptive control for infinite dimen-

sional systems. This would include delay-time systems (e.g. systems where

transmission is required over long distances) or flexible and articulated space

structures.

The design of (2) is quite intuitive. The pole-zero configuration of (1) is

depicted in Figure 1, where O's represent zeros and x's represent poles.

V
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O0

Figiire .. Pole-zero configuration of (1).

We note that, if (A,b,c) were known, then by choosing u-sign(cb)ky with k

> 0 the root-loci for figure 1 would tend to the zeros with one infinite branch

moving to --oo along the real axis. This is depicted in Figure 2.

In the case where (A,b,c) are unknown our strategy is to tune k according

to (2), thereby increasing k as long as y is unstable. The feedback law

u = s(k)ky

switches sign sufficiently often to offset our lack of knowledge of sign(cb). The

stability proof is given in detail in the references. A similar philosophy has been

pursued for the cases where

cb = 0, cAb = 0, ... cAn-lb>O

asking only for an upper bound on n*.

Adaptive Control and .east Squares
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In his recent thesis A. Bloch has investigated total least squares questions

from a geometrical point of view and has resolved the issues of existence and

uniqueness of minima, maxima and other stationary points in a definitive way.

Recall that total least squares refers to fitting a line (plane ...) to a set of points

using the criteria of minimizing the sum of the squares of the Euclidean dis-

tances between the points and the line, rather than the sum of the squares of

the y-axis deviations. In many cases total least squares is to be preferred to

ordinary least squares fitting and in system identification it is particularly

attractive. Bloch has formulated this problem, following earlier work of Byrnes

and Willems, as a minimization problem in a Grassmannian space. Having a

correct global version of this problem he was able to relate it to a recent work

in symplectic geometry and to illustrate its significance in this context.

Reent Dpvelnpments

Recently our work at Harvard on adaptive control has turned to problems

involving adaptation in a broader setting. Among the remaining problems

which call for adaptation is a class which we might think of as multimode prob-

lems. As contrasted with the universal stabilizer situation discussed above,

these problems have a more pronounced discrete character. An example is an

electric circuit which contains diodes. Such circuits may be governed by

different numbers of differential equations depending on the voltage across the

diodes. Mechanical systems involving the common nonlinearity, dead zone, are

also of this type. The regulation of such systems is not well understood; even

the stability of an autonomous system of this type may be difficult to check. It

is clear that differential equation methods must, in such cases, be supplemented

with combinatorial analysis. In a recent paper we have begun the study of such

systems.
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Work is underway to attempt a classification of systems of this type. It is

possible to associate with each such system a certain convex polytope and a

corresponding partially ordered set. The dynamics on each element of this set

is governed by a set of ordinary differential equations and jump conditions are

given which describe the transitions. It is expected that one can identify the

qualitative features of such systems and describe a control philosophy which

effectively adapts to the circumstances the system finds itself in.

The interface between subsystems which we ordinarily find useful is con-

ceptualized by a block diagram. Historically this was based on an analog com-

puter circuit diagram. In robotic manipulation the interface between "subsys-

tems" is more complex in that when two rigid bodies are interfaced there is a

force vector and a torque vector which characterizes the interface -- all together

six scalar quantities must be balanced. In designing a control system to achieve

a suitable coupling between bodies the positioning and orientation problems

which must be solved involve, again, six variables. By doing a mathematical

analysis of this process we were able to show that rigid-rigid interfaces have a

certain intrinsic complexity associated with them which is, in a robotic context,

needlessly complex and that by going to a passively adaptive fluid membrane-

rigid interface the complexity can be reduced to a manageable level.

Mathematical theory has been tested by building fluid membrane surfaces

and measuring their characteristics as interfaces with rigid bodies. These

experimental results have verified the analysis to such a large extent that (with

support from NSF) more elaborate systems are being built.



Publications

[1] C.I. Byrnes, "On Certain Topological Invariants Arising in System Theory"
with T.E. Duncan), to appear in New Direetions in Applied Mathematics
P. Hilton and G.S. Young, editors) Springer-Verlag, 1981.

[2] R.W. Brockett, "Nonlinear Systems and Nonlinear Estimation Theory," in
Stoehagtie Systems (M. Hazewinkel and J.C. Willems, eds.). Dordrecht,
The Netherlands: Reidel Publishing Co., 1981, pp. 441-477.

[3] R.W. Brockett, "Asymptotically Optimal Estimation", Proceedings of the
20th TEE ,onferenee on Derision and Control, San Diego, CA, Vol. 1
(1981) pp. 76-79.

[41 0.I. Byrnes and A. Lindquist, "The Stability and Instability of Partial
Realizations," Systems kr Control T.etters=, Vol. 2, No. 2, August 1982,
North Holland Publishers, pp. 99-105.

[5] D. Delchamps and C.I. Byrnes, "Critical Point Behavior of Objective Func-
tions Defined on Spaces of Multivariable Systems," Proc. 21st IEEE Conf.
on Deeision and Control, Vol. 2, (1982), pp. 937-943.

[6] C.I. Byrnes and P.K. Stevens, "Pole Placement by Static and Dynamic
Output Feedback," Proc. 21st EE Conf. on Decision and Control, Vol. 1,
(1082), pp. 130-133.

[7] C.I. Byrnes, "Geometric Aspects of the Convergence Analysis of
Identification Algorithms," in Nonlinear Stoehastie Problems (R.S. Bucy
and J.F. Moura, eds.), D. Reidel, Dordrecht, 1982.

[8] N.L. Gunther, "Hamiltonian Mechanics and Optimal Control", Ph.D.
Thesis, Division of Applied Sciences, Harvard University, 1982.

[9] C.I. Byrnes, "A Brief Tutorial on Calculus on Manifolds, with Emphasis on
Applications to Identification and Control" in Nonlinear Stoehatic Prob-
"Ima (R.S. Bucy and J.F. Moura, eds.), D. Reidel, Dordrecht, 1982, pp. 123-
150.

[10] B.K. Ghosh, "Simultaneous Stabilization and Pole Placement of a Mul-
timode Linear Dynamical System", Ph.D. Thesis, Division of Applied Sci-
ences, Harvard University, 1983.

[11] R.W. Brockett, "Nonlinear Control Theory and Differential Geometry",
Proceedings of the 192 Tnternational Congress of Matbemati*ans,

[12] C.I. Byrnes, "On Compactifications of Spaces of Systems and Dynamic
Compensation", Proc. EE Decision & Coitrol, 1983.

[13] R.W. Brockett, "Estimation Algebras and Fourier Duality", IFAC Congress
Digital Contrml, New Delhi, India, 1983.

[14] C.I. Byrnes, "On the Stabilizability of Multivariable Systems by Minimum
Order Compensation , Proc. TREE Decision k Control, 1983 (with Brian
Anderson).

[15] R.W. Brockett, "Linear Feedback Systems and the Groups of Galois and
Lie," Linear Algebra and Its Applications, Elsevier Science Publishing Co.,
Vol. 50, April 1983, pp. 45-60.

[161 C.I. Byrnes, "On a Theorem of Hermite and Hurwitz," Linear Algebra and
Its Applications, Elsevier Science Publishing Co., Vol. 50, April 1983, pp.61-101.

[17] R.W. Brockett, "Asymptotic Stability and Feedback Stabilization,"
Differential Geometric Control Theory (R.W. Brockett, R.S. Millman, and
H.J. Sussmann, eds.), Birkhauser, 1983, pp. 181-191.

Lao"



-2-

[18] C.I. Byrnes, "High Gain Feedback and the Stabilizability of Multivariable
Systems," Analviss and Optimization of Systems, Bensoussan & J.L. Lion,
eds., Lecture Notes in Inf&Cntro, 1983, pp. 20-33, Versailles, Springer-
Verlag, Berlin.

[19] C.I. Byrnes and B.K. Ghosh, "Simultaneous Stabilization and Simultaneous
Pole Placement by Nonswitching Dynamic Compensation," EEE Trans.
Au.L Control, 28, 1983, pp. 735-741.

[20] 0.I. Byrnes and P.K. Stevens, "Global Properties of the Root-Locus Map,"
in Feedback Control of Liner and Nonlinear Systems (D. Hinrichsen and A.
Isido.ri, eds.), Lecture Notes in Tnf. Control, Vol. 39, Springer-Verlag, Berlin,
1983, pp. 9-29.

[21] R.W. Brockett, "The Global Description of Locally Linear Systems," in
Feedback Control of Linear Fnd Nonlinear Systems (D. Hinrichsen aned A.
Isidori, eds.), Lecture Notes in Tnf. Control, Vol. 39, Springer-Verlag, Berlin,
1983, pp. 1-8.

[22] C.I. Byrnes, "Control Theory, Inverse Spectral Problems, and Real Alge-
braic Geometry," Differential Geometric Control Theory (R.W. Brockett,
R.S. Millman, and H.J. Sussmann, eds.), Birkhauser, 1983, pp. 192-209.

[23] N. S. Papageorgiou, "Nonsmooth and Multivalued Analysis with Applica-
tions in Optimization", Ph.D. Thesis, Division of Applied Sciences, Harvard
University, 1983.

[24] R. W. Brockett, "Smooth Multimode Control Systems," Proceedings of the
I9 3 Berkele/Ames Conference on Nonlinear Problems in Control and
Dynamics. Mth Sci Press, 1984, pp. 103-110. (L. Hunt and C. Martin,

Eds.)
(251 S.R. Peck, "Combinatorics of Schubert Calculus and Inverse Eigenvalue

Problems", Ph.D. Thesis, Division of Applied Sciences, Harvard University,
1984.

. [26] R.W. Brockett, "Robotic Hand with Rheological Surfaces," Proceedings of
th. IM IEE Conferences on Robotics and Automation, St. Louis, MO.

[27] Bloch, A., "Completely Integrable Hamiltonian Systems and Total Least
Squares Estimation", Ph.D. Thesis, Division of Applied Sciences, Harvard
University, September 1985.

[28] C.I. Byrnes and J.C. Willems, "Global Adaptive Stabilization in the
Absence of Information on the Sign of the High Frequency Gain", Analysis
.& Optimization of Systems, Nice, France, June 1984.

4 'h.i

.4



DEC PEES AWARDED

Anthony Bloch, Ph.D. 1985, "Completely Integrable Hamiltonian Systems
and Total Least Squares Estimation".

Stephen Peck, Ph.D. 1984, "Combinatorics of Schubert Calculus and
Inverse Eigenvalue Problems".

Nikolaos Papageorgiou, Ph.D., 1983, "Nonsmooth and Multivalued
Applications in Optimization".

Bijoy Ghosh, Ph.D. 1983, "Simultaneous Stabilization aid Pole Placement
of a Multimode Linear Dynamical System".

Nicholas Gunther, Ph.D. 1982, "Hamiltonian Mechanics and Optimal
Control".

t,

PERSONNEL SUPPORTED
C.I. Byrnes

R.W. Brockett

A. Bloch
Bijoy Ghosh
N. Gunther
N. Papageorgiou
S. Peck
K. Wohn
Jian Wu

7 ..-

'-"S

',,



nA

L46 1%"S


